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Discrete modelling: logical formalism (Thomas and d'Ari, Biological Feedback 1989)

Logical regulatory graph (LRG) R= (G, K)

m G = {gi}i=0,...,n is a set of regulatory components

m Max : G — N* associates a maximum level M; to each component g;

m S =[], cg Di is the state space, where D; = {0, ..., Max(gi)}

m Vgi: Ki: S — D; is the regulatory function specifying the behaviour of g;

State transition graph (STG)
The dynamic behaviour of an LRG, is represented by an STG where:
m nodes are states in S

m and arcs (v, w) € §? denote transitions between states
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Problem

Attractors

Correspond to asymptotic behaviours where:

m all gene levels are maintained Stable state

m long-lasting oscillating behaviour Complex attractor

Trajectories quantification

m The weighted number of trajectories towards an attractor represents the
structural biases of the STG

m Hidden assumption: successor states are equiprobable

m This assumption can easily be modified introducing weights

Central question

What is the likelihood of reaching an attractor from a
given portion of the state space?
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m Given a (set of) initial condition(s) and, optionally, a (set of) attractor(s),

quantify the trajectories towards the attractor(s)

m Identify/characterize unknown attractor(s)
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Size of the State Transition Graphs

# States
# Components Boolean 3-valued
3 8 27
10 1 024 59 049
20 1 048 576 3 486 784 401
30 1073 741 824 205 891 132 094 649
40 1 099 511 627 776 12 157 665 459 056 928 801




Objective
m Given a (set of) initial condition(s) and, optionally, a (set of) attractor(s),
quantify the trajectories towards the attractor(s)
m Identify/characterize unknown attractor(s)

Size of the State Transition Graphs

# States
# Components Boolean 3-valued
3 8 27
10 1 024 59 049
20 1 048 576 3 486 784 401
30 1073 741 824 205 891 132 094 649
40 1 099 511 627 776 12 157 665 459 056 928 801

Challenge

Combinatorial explosion!




Methods




Attractor characterization approaches

Without STG exploration

m Using OMDDs (Naldi et al., CMSB 2007)
m Using SAT (de Jong and Page, IEEE/ACM Trans. Comp. Biol. Bioinf. 2008)
[ ] Using reduction techniques and network motifs (Zafiudo and Albert, PLoS One 2013)

With full (reachable) STG exploration

m Using ROBDDs (Garg et al., RECOMB 2007)

m Using HTG (Bérengier et al,, Chaos 2013)
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Attractor characterization approaches

Without STG exploration

m Using OMDDs (Naldi et al., CMSB 2007)
m Using SAT (de Jong and Page, IEEE/ACM Trans. Comp. Biol. Bioinf. 2008)
[ ] Using reduction techniques and network motifs (Zafiudo and Albert, PLoS One 2013)

With full (reachable) STG exploration

m Using ROBDDs (Garg et al., RECOMB 2007)
m Using HTG (Bérengier et al,, Chaos 2013)
m FIREFRONT (Mendes, Monteiro et al., ECCB 2014 submitted)
m Monte Carlo simulations
m BOOLNET (Miissel et al., Bioinformatics 2010)
m AVATAR (Mendes, Monteiro et al., ECCB 2014 submitted)

Trajectory characterization approach:
= MABOSS (Stoll et al., BMC Syst Biol 2012)




Approach: Quasi-exact (FIREFRONT algorithm)

Explore the STG from an initial condition

m Divide and carry probability to successor states
m Accumulate probability in states with no successors — stable states
]

Do not explore states with probability below «

|
The algorithm maintains 3 state sets:

m F — the current firefront

m N — the set of neglected states

m A — the set of attractors




Approach: Quasi-exact (FIREFRONT algorithm)

a= = max iterations = 10

Start exploration from given initial condition vy, with unitary probability

Iteration = 1

AN
Bf




Approach: Quasi-exact (FIREFRONT algorithm)

a= = max iterations = 10

Carry probability to successors dividing it by the number of successors — current
firefront

Iteration = 2

F:{VZ,V5}
N=0
A=10

<
N




Approach: Quasi-exact (FIREFRONT algorithm)

max iterations = 10

States with no successors are attractors and accumulate probability

Iteration = 3

F= {V37 Va, Vﬁ}
N=0
A= {V7}
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Approach: Quasi-exact (FIREFRONT algorithm)

a =16 max iterations = 10

States with no successors are attractors and accumulate probability

Iteration = 4

F = {V]7 V3, V4, Vﬁ}
N=0

A= {V77 Vs}

2
@

2?
~@
®




Approach: Quasi-exact (FIREFRONT algorithm)

max iterations = 10

States with no successors are attractors and accumulate probability

Iteration = 5

F = {V]7 V2, V3, V4, V5, V5}
N=0

A= {V7,V8}
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Approach: Quasi-exact (FIREFRONT algorithm)

o= max iterations = 10

States accumulate probability given by multiple predecessor states
States with probability below « are moved to a special set — neglected states —
and are no longer explored

=

Iteration = 6
F={vi,vo,vs,va, s}
N ={v}

A={v, v}

K=

Bleo
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Approach: Quasi-exact (FIREFRONT algorithm)

i max iterations = 10

States in the neglected set still accumulate probability and can be moved back
to the firefront

Iteration = 7

F = {Vg,7 V5}

N = {vi, va, va, v6} & @
A= {v, v}
Hé—.
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Approach: Quasi-exact (FIREFRONT algorithm)

a= =t max iterations = 10

States in the neglected set still accumulate probability and can be moved back
to the firefront

Iteration = 8
F={va, v}
N ={vi, v} 5

A={v, v} I
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Approach: Quasi-exact (FIREFRONT algorithm)

a= = max iterations = 10

States in the neglected set still accumulate probability and can be moved back
to the firefront

Iteration = 9

-
|
—~
=
S
By
-

[on

1
32 1

N ={v.}
A={v, v}
5 .1

o

2

i?
e




Approach: Quasi-exact (FIREFRONT algorithm)

a= = max iterations = 10

Execution halts when the firefront is empty or the maximum number of
iterations is reached

Iteration = 10

F = {V27 V3} 7 1 5
N = {V47 V5} @ 1
A={v, v}
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Approach: Quasi-exact (FIREFRONT algorithm)

a= = max iterations = 10

Execution halts when the firefront is empty or the maximum number of
iterations is reached

Iteration = 10

F = {VQ7 V3}

N = {V47 VS} % 2 21 @%
A={v, v}
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Approach: Quasi-exact (FIREFRONT algorithm)

m The maximum number of iterations and the o parameters control the
running time and the precision




Approach: Quasi-exact (FIREFRONT algorithm)

m The maximum number of iterations and the o parameters control the
running time and the precision

m Cannot directly identify complex attractors
m Large transient cycles may take too long to distribute probability
m “Wide" STGs may hurry every state to the neglected set

m Lowering a may help, but the #states in the firefront grows very fast




Approach: Stochastic (Monte Carlo algorithm)

|
Exploration starts at a given initial state v;
Next state is picked at random from set of successors (random walk)

Exploration stops when a stable state is reached

Repeat for n simulations

Number of trajectories towards an attractor measures its probability




Approach: Stochastic (Monte Carlo algorithm)

|
Exploration starts at a given initial state v;
Next state is picked at random from set of successors (random walk)

Exploration stops when a stable state is reached

Repeat for n simulations

Number of trajectories towards an attractor measures its probability

m May get stuck in large transients

m Is not able to identify complex attractors (unless they are already known)




Approach: Stochastic (AVATAR algorithm)

m Modified Monte Carlo simulation
m When a cycle is detected, the STG is re-wired to remove the cycle — new
incarnation of the STG
m Transitions between cycle members are replaced by transitions to the cycle
exits
m Equivalent to performing a random walk over Markov chains (proven)
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Approach: Stochastic (AVATAR algorithm)

m The number of simulation runs controls the running time and precision




Approach: Stochastic (AVATAR algorithm)

m The number of simulation runs controls the running time and precision

I —
m Huge transients and complex attractors may exhaust memory
(when they correspond to an entire portion of a very large state space)

m Very large cycles may not be easily re-wired
(cycle re-wiring requires a matrix inversion step)




Optimizations & additional features

FIREFRONT and AVATAR

m An oracle may be provided to identify a known complex attractor
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m Cycles are expanded by 7 steps in an attempt to find a larger connected
component to re-wire
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Optimizations & additional features

AVATAR

m Prior to cycle re-wiring a phase of 7-expansion is performed
m Cycles are expanded by 7 steps in an attempt to find a larger connected
component to re-wire
m The value of 7 is doubled for every new incarnation in the same simulation
run
m If the number of re-wired transitions surpasses a predefined limit
(default=2'%), the expansion phase is unbounded




Optimizations & additional features

AVATAR

m Complex attractors identified in one run are used to create an oracle to
identify member states in subsequent simulation runs




Optimizations & additional features

AVATAR

m Complex attractors identified in one run are used to create an oracle to
identify member states in subsequent simulation runs

m Large transients re-wired in one run are also carried to subsequent runs




Optimizations & additional features

AVATAR
The initial conditions of the simulation runs may be:

m identical (fixed or random)

m a sample (of the entire state space, or a portion of the state space
identified by an oracle)




Results




Synthetic models

Name # Components # Attractors State space size
Inputs Proper | Stable Complex
Random model 1 | O 10 1 1 1024
Random model 2 | 0 10 1 1 1024
Random model 3 | 0 15 1 1 32 768
Random model 4 | 0 15 2 0 32 768
Model characteristics
Random models generated using BOOLNET (Missel et al., Bioinformatics 2010)

Selected 4 models:

m 2 models with 10 components + 2 models with 15 components

m each component with 2 randomly selected regulators
m logical parameters randomly selected

m Selected models capable of generating a common basin of attraction




Synthetic models: Random model 1

Name # Components # Attractors
Inputs Proper | Stable Complex
Random model 1 | 0 10 |1 1 | 1024

State space size
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Synthetic models: Random model 1

Name # Components # Attractors State space size
Inputs Proper | Stable Complex
Random model 1 | 0 10 |1 1 | 1024

D

—

femmoor.
Initial FIREFRONT (o = 107°) AVATAR (10* runs)

conditions Time Attractors Residual Iterations ‘ Time Attractors (p) Avg depth

. . SS1 (0.67) 9.18

3
uncommitted ‘ 57s SS1 (0.67) 0.33 10 ‘ 12.4min CA2 (0.33) 53

Residual: Neglected + Firefront sets




Synthetic models: Random model 4

Name # Components # Attractors
Inputs Proper | Stable Complex
Random model 4 | 0 15 | 2 0 | 32768

State space size




Synthetic models: Random model 4
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Synthetic models: Random model 4

Name # Components # Attractors State space size
Inputs Proper | Stable Complex
Random model 4 | 0 15 | 2 0 | 32768

Initial FIREFRONT (o = 107°) AVATAR (10* runs)
conditions Time Attractors Residual Iterations ‘ Time Attractors (p) Avg depth
uncommitted ‘ 3.2h 551 (0.40) 0.09 38 ‘ 7.6min 551 (0.40) 2064

$S2 (0.51) $52 (0.54) 15.11




Biological models: Mammalian cell cycle

Name # Components # Attractors State space size
Inputs Proper Stable Complex
Mammalian Cell Cycle ‘ 1 9 1 1 1024

Model characteristics

Has small state space
m Half the state space towards a stable state

m Half the state space towards a complex attractor (Fauré et al., Bioinformatics 2006)




Biological models: Mammalian cell cycle

Name # Components # Attractors State space size
Inputs Proper Stable Complex
Mammalian Cell Cycle ‘ 1 9 1 1 1024

20




Biological models: Mammalian cell cycle

Name # Components # Attractors State space size
Inputs Proper Stable Complex
Mammalian Cell Cycle ‘ 1 9 1 1 1 024

Initial FIREFRONT (o = 107°) AVATAR (10* runs)
conditions | Time Attractors Residual Iterations Time Attractors (p) Avg depth
CycD =1 2.08min - - (0.00) 1.00 10 2.2min CA1 (1.00) 5.95

) ) . CAT (0.50) 432
sampling N/A - due to sampling 2.35min 552 (0.50) 276

20




Biological models: Mammalian cell cycle

# Attractors State space size

Name # Components
Inputs Proper Stable Complex
Mammalian Cell Cycle ‘ 1 9 1 1 1 024
Probability evolution of boolean cell cycle a=0.005
! ' ' ' ' ' l‘\leglecled‘
Firefront
Attractors --------
08 ]
o osf ,
§
e
&
o4 r o~ A\ / A NSV '”\\/7/’
/
02 “ 4
oLt I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100
Iterations
Initial FIREFRONT (a = 107°) AVATAR (10* runs)
conditions | Time Attractors Residual Iterations Time Attractors (p) Avg depth
CycD =1 | 2.08min - - (0.00) 1.00 10° 2.2min CAL1 (1.00) 5.95
. . . CA1 (0.50) 4.32
sampling N/A - due to sampling 2.35min $52 (0.50) 276

20




Biological models: Segment Polarity

Name # Components # Attractors State space size
‘ Inputs Proper Stable Complex
Segment Polarity (1-cell) | 2 12 3 0 186 624
Segment Polarity (2-cells) | 0 24 3 0 ~ 9.7 x 107
Segment Polarity (4-cells) | 0 48 15 0 ~ 9.4 x 10V

Model characteristics

No complex attractors
Multi-stability
Big state space

Many small transient cycles (Sanchez et al., Int. J. Dev. Biol. 2008)




Biological models: Segment Polarity

Name # Components # Attractors State space size
Inputs Proper Stable Complex
Segment Polarity (1-cell) | 2 12 3 0 186 624
Segment Polarity (2-cells) | 0 24 3 0 ~9.7 x 107
Segment Polarity (4-cells) | 0 48 15 0 ~ 9.4 x 10"
Name Initial FIREFRONT (a = 107°) AVATAR (10* runs)
conditions Time Attractors Residual Iterations | Time Attractors (p) Avg depth
) ) SS1 (0.84 SS1 (0.84
Segment Polarity (1-cell) | Wg-expressing cell | 5s 52 50‘15 <1073 43 617 ooy EO 16;
SST (0.8904)
Segment Polarity (2-cells) Pair rule 17.74h 23; Eg?g; 0.25 83 30m $52 (0.1093)
: 553 (0.0003)
SS57 (0.8702)
SS1 (0.0619)
SS1 (0.13) S5 (0.0528)
Segment Polarity (4-cells) Pair rule 111.7h $52(0.02) 0.84 52 1.49h SS4 (0.0135)
$S3 (0.01) SS3 (0. 0014)
$S6 (1074 )
SS2(107%)

21




Biological models: Segment Polarity

Name # Components # Attractors State space size
‘ Inputs Proper Stable Complex
Segment Polarity (1-cell) | 2 12 3 0 186 624
Segment Polarity (2-cells) | 0 24 3 0 ~9.7 x 107
Segment Polarity (4-cells) | 0 48 15 0 ~ 9.4 x 10Y7

Attractor probability estimation for Droso.Sanchez.12v.4cells

probability

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
iterations

21




Biological models: Th differentiation

Name # Components # Attractors State space size
Inputs Proper Stable Complex
Th differentiation reduced | 13 21 434 0 ~39x10"

Model characteristics

m Multi-stability (input-dependent)
m Huge state space

[ ] Many stable states (Naldi et al., PLoS Comp Biol 2010)

Legend:

SS1 - Th17

SS2 - Th2ROR~t+

SS3 - Tho

SS4 - Anergic ThIROR~t+

22




Biological models: Th differentiation

Name # Components # Attractors State space size
Inputs Proper Stable Complex
Th differentiation reduced | 13 21 434 0 ~39x10"
Initial FIREFRONT (o = 107°) AVATAR (10* runs)
conditions Time Attractors Residual Iterations Time Attractors (p) Avg depth
SS1(0.63) 1.00
. . . ) $S2 (0.13) 7.00
Th17+inputsampling N/A - due to sampling 1.5min 553 (0.12) 13.00
SS4 (0.12) 4.00
Legend:
SS1 - Th17
SS2 - Th2ROR~t+
SS3 - ThO

SS4 - Anergic ThIROR~yt+

22




Biological models: Th differentiation

Name # Components # Attractors State space size
Inputs Proper Stable Complex
Th differentiation reduced ‘ 13 21 434 0 ~ 3.9 x 107

Attractor probability estimation for th-reduced

=

5

©

Q

[

(=8

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
iterations

Legend:
SS1 - Thi7
$52 - Th2ROR~yt+
SS3 - Tho

SS4 - Anergic ThIROR~t+
22




Complete results

Name Tnitial FIREFRONT (o = 10 AVATAR (107 runs) BoolNet (107 runs)
conditions Time _ Attractors (p) _Residual _lterations | Time _ Attractors (p) Avg depth _ Time _Attractors (p)
- s N PAL (0.67) 9.8 PAL (0.67)
Random 1 uncommitted 57s PAL (0.67) 033 10 12.4min cA2(033) 53 105 A2 (033)
- ) PAT (025) 643 PAT (0.25)
Random 2 uncommitted 2 PAI (0.25) 075 10 1.8min ca2(073) 91 195 A2 (073)
- S PAL (021) 883 PAT (0.20)
Random 3 uncommitted 30s PAL (0.21) 079 10 5.3min A2 (079) 845 20s A2 (0.30)
- PAT (0.40) PAT (0.46)  20.64 PAT (0.46)
Random 4 uncommitted 3.2h PA2 (0.51) 0.09 38 7.6min PA2 (054) 151 195 PA2 (0.54)
" PAL (0.58) 1845 PAT (0.60)
Synthetic 1 82h PAL (0.56) 0.44 10 35min CAL(042) 901 185.5h A2 (0.40)
- PAT (0.06) " - PAT (0.07) 2715 PAT (0.08)
Synthetic 2 uncommitted SL6h brs (104 0.94 10 58.5min PA2 (093) 138 120h PA2 (0.92)
Cell Cycle Cyb = 2.08min___- - (0.00) 1.00 10 2.2min CAL (1.00) 595 3.25min CAI (1.00)
) CAL (050) 432 CAT (0.50)
Mammalian Cell Cycle sampling N/A - due to sampling 2.35min PA2 (050) 276 1.83min PA2 (0.50)
Segment Polarity (1-cell)  Weg-expressing cell 55 "~ :g f;; <10 3 8.2min o ig fg; e N/A - Boolean only
PAL (0.65) PAT (0.89) 38.83
Segment Polarity (2-cells) ~ Pair rule 72 b 010) 025 83 25.2min PA2(0.11)  18.64 N/A - Boolean only
PA3 (10 %) 49.00
PAL (087) 5912
PA2(0.06)  43.40
PAL (0.13) PA3 (0.06) 3651
Segment Polarity (4-cells) Pair rule 105.7h  PA2 (0.02) 0.84 52 1.2h PA4 (0.01)  67.01 N/A - Boolean only
PA3 (0.01) PAS (107%) 5610
PAG6 (107%)  96.50
PA7 (10%)  138.00
PAT (063) 100
. . . PA2 (0.13)  7.00 .
Th differentiation reduced  Th17-+inputsampling N/A - due to sampling 1.5min PA3 (012)  13.00 N/A - Boolean only
PA4(0.12)  4.00




Conclusions and Prospects

24




Conclusions

Challenge

m Characterize and quantify the attractors in the context of discrete
asynchronous dynamics

m The difficulty lies in the size and structure of the state spaces




Conclusions

Challenge

m Characterize and quantify the attractors in the context of discrete
asynchronous dynamics

m The difficulty lies in the size and structure of the state spaces

m There is no ideal solution
The structure of the state space is unknown a priori

m We propose two approaches to tackle the problem
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Conclusions

m Best approach to use depends on the structure of the STG

m The number and size of transient cycles have an impact on both
FIREFRONT and AVATAR

FIREFRONT

m Fast and quasi-exact for STGs which are not too “wide”

A\ VN

m Well-suited to deal with cycles (complex attractors and transients)

m Rare attractors may need many simulation runs to be found




Prospects

m Instead of considering equiprobable successor states, weights can be
introduced (per component)

m Integrate the approaches in GINsim
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